
F L U X  D I F F U S I O N  D U R I N G  M A G N E T I C  A C C U M U L A T I O N  

IN  N A R R O W  C A V I T I E S  

E .  I .  B i c h e n k o v  a n d  E .  P .  M a t o e h k i n  UDC 538.4 

An equation is obtained for the flux diffusion during the compress ion  of a uniform magnetic 
field in a flat gap. Calculations are  made for  fast  and slow pumping of the cavity by the in-  
itial cur rent  and for  a constant l inear  increase  and an increase  proportional to tvT-in the 
initial cur rent .  It is shown that the flux losses  are  considerable even for  large magnetic 
Reynolds numbers;  the flux losses  depend essential ly on the pumping time and depend 
little on the shape of the pumping current  pulse. 

I. The compression of magnetic flux within a conducting circuit is called magnetic accumulation. 
Here the induction L of the circuit decreases while the current I and the magnetic field B increase. The 

energy of the magnetic field is 

L i  ~ Lo } LI  ~2 i U = ~ I r---~-] = T L~ 

Here L0 is the initial induction of the circuit, Io is the initial current in it, ~ = L0/L is the turning 
coefficient of the circuit, and F = LI/L010 is the fraction of the magnetic flux remaining in the circuit. 

The energetic possibilities of magnetic accumulation are limited by the fraction F of flux retained in 
the circuit, in connection with which the study of flux losses represents an important problem in the analysis 
of the operation of powerful magnetic accumulation devices, the so-called MA generators. 

A large number  of problems on the diffusion of a magnetic field into a s tat ionary conductor are  p r e -  
sented in [1]. The solutions of these problems a re  ca r r i ed  over to magnetic accu~nulation through the caI-  
culation of the effective depth of the skin layer  and the use of the resul t  on the conservat ion of the sum of 
the flux in the tVIA genera to r  and the conductor [2]. 

Among the problems of magnetic accumulation considered are  the compress ion  of a field by two 
infinite flat conductors moving toward each other with constant velocity [3] and a number  of s e l f - s imi l a r  
axially symmet r i ca l  problems with v -- q/27rr [4]. Here the conductivity was assumed to be constant.  It 
is shown that toward the end of the compress ion  both in the plane and the axially symmet r ica l  problems 
all the flux passes  into the conductors .  

20 Among the different types of MA genera tors ,  the fiat genera tors  ]5,6] are  distinguished by s im-  
plicity of construct ion and good energet ic  charac te r i s t i c s .  

By neglecting the nonuniformity of the field in the cavity of a fiat MA genera tor  and the flux losses  at 
the site of encounter of the walls of the casset te  with the busba r s ,  one can adopt the following model of an 
unprofiled fiat MA genera tor  (Fig. 1). A uniform magnetic field is compressed  in the fiat cavity of an ideal 
piston moving with the detonation velocity D between two parallel  conductors .  The other  side of the cavity 
is closed by an ideal conductor,  which follows from the symmet ry  of the construction of the genera tors  
descr ibed  in [5, 6]. The uniformity of the field in the cavity permits  one to consider  flux leakage only in 
the direction perpendicular  to the conductor sur face .  The conductors can be assumed to be unbounded 
since the thickness of the skin l aye r  is small  compared with the thickness of the bus bars  of the generator .  

Novosibirsk.  Trans la ted  from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki,  No. 4, pp. 148- 
152, July-August ,  1974. Original ar t ic le  submitted January 11, 1974. 

�9 76 Plenum Pubhshing Corporation, 22 7 West 17th Street, New York, N. Y. 10011. No part o f  this publication may be reproduced, 
stored in a retrieval system, or transmitted, zn any form or by any means, electronic, mechanical, photocopying, microfilmfl~g, 
recording or otherwise, without written permission o f  the publisher. A copy o f  this article is available from the publisher for $15.00. 

555 



The field in the conductor at cr = const  is determined by the solution of the diffusion equation [7]. 

Bt = ~-1 Bx~ ( 2 . 1 )  

which sat isf ies  the following induction equation and initial condition at the boundary x = 0 of the cavity: 

d 2 I (2.2) d--7 (l - -  t) B (t) = ~ ( - -  t) B~ J.=0 

B (x, 0) = B o (x) (2.3) 

Here the t ime is relat ive to the t ime of motion of the compress ing  piston l 0/D, x is relat ive to the 
distance a between the bus bars ,  the magnetic  field is relat ive to the field B0 at the moment  of capture of 
the flux , and the flux is relat ive to the initial flux B0/0a in the cavity. 

The p a r a m e t e r  # = ~4~ro'a2D/c2/0 represents  the magnetic Reynolds number .  By setting 

B~J~= 0 = - -  q (t) ( 2 . 4 )  

one can find the solution of Eq. (2.1) which satisfies the conditions (2.3) and (2.4) and from it calculate the 
field at the conductor boundary 

t 

B ( t ) =  y.~- ~ ~o ] / '~- -~+ ]/'t" u U~ 

By solving this integral  equation relative to q(t) one can obtain the value BxIx=0 and af ter  substitution 
into the condition (2.2) one can a r r ive  at an equation for  the field in the cavity 

t 
d 2(t--t) d ~" B(~;)d,~ 2 t - - t  

-if/- (t - -  t) B (t) = - -  t f  ~ dt 1 ~ + V"~ V i- F I (t) ( 2 . 5 )  

4 (t - t) Be' ~ - - ~ ]  e-:'d~ 
! ( t )  - ~ V------T 0 

After  integrat ion of (2.5) with respec t  to t ime 
t t 

i --F = - - ~  V - ~  B ( v ) d v - - - ~ \  ---~ -- f(~)d~ ( 2 . 7 )  

Here the flux in the cavity F = (1-t)B(t) is introduced. By multiplying the identity 
t 

i f dE i=--~- ]/ (t -- ;) (~ -- x) 

by (1 + t -  2T) B (T) and integrating it with respect to �9 from 0 to t we obtain 

t + ~ - y ~  B m a , = ] /  ~ t -  1 ( ~ ) x  

0 O 
t ! 

0 V V i - ~  

After  double differentiation with respec t  to t ime we obtain with the help of (2.5) and (2.7) the equation 

for  the flux in the cavity 
d ZF (~ )dF 

~ (i -- t) - ~ - -  +4(I- -0  - ~ - - 2 F  = r (t) (2.8) 
t 

q~(t)=2(t--t)--2 V_ [. - ~ ] ( t ) ~ - ~ ( i - - t ) ] ' ( t ) - - 2  (i--t) ~ t - - v  

The initial conditions a re  

Fig. 1 

F (0) = t, y" (0) = I <0) (2.10) 

The latter condition is obtained from (2.5) with 

the limiting transition t --0, B(t) --  1. 

With the change in the variable 1 - t  = x 2 Eq. 

(2.8) is reduced to 

d2F dF 
4 dx ~" + 2 x - ~ - x - - 2 F = ~ ( x )  (2.11) 
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the solut ion of which has  the f o r m  

F (x) = r.e -;~' ~ + r , 'x  § F,2 ~h-~ xe (2x/V~) + F,:~) (2.12) 

Here  4,(z) is the p robab i l i ty  in teg ra l  and F t ( x ) i s  the par t ia l  solut ion of the nonhomogeneous  equat ion 
(2.117 sa t i s fy ing  the null condi t ions  at  x = 0. It is easy  to wr i t e  Fi(x) in q u a d r a t u r e s  and,  us ing (2.6) and 
(2.9), to show that  Fl(x) = 0(x 4) as  x --  0, i .e . ,  at  the end of the c o m p r e s s i o n  the flux in the cavi ty  is 

Y (x) = F," + F,x + 4~C1F,x ~ + 0 @4) 

Thus ,  t oward  the end of the c o m p r e s s i o n  two cons tan ts  (F . ,  F , ' ) w h i c h  de t e rmine  the flux leakage  a r e  
g e n e r a t e d  f r o m  the init ial  d i s t r ibu t ion  of the f ield in the wal ls  of the cavi ty .  

3. In the e x p e r i m e n t s  the init ial  f i e ld in  the g e n e r a t o r  cavi ty  is p roduced  by a c u r r e n t  sou rce  which 
pumps  the g e n e r a t o r .  The ini t ial  field d i s t r ibu t ion  B0(x) in the cavi ty  wal ls  depends on the pumping t ime  to 
and the shape of the pumping c u r r e n t  pulse  and is de t e rmined  by the solut ion of Eq. (2.17 fo r  the given Iaw 
of va r i a t i on  of the f ield at  the conduc to r  boundary .  

Two l imi t ing  c a s e s  of pumping  can be d i s t inguished:  slow pumping (T o - -  ~) when the f ield pene t r a t e s  
deep into the cavi ty  wal ls  and B0(x) = 1, and rapid  pumping (to - -  0) when the f ield does not pene t ra te  into 
the conduc to r  and B0(x) = 0 while  at  the boundary  B0(o) = 1. With slow pumping the solut ion of Eq. {2.8) has 
the f o r m  

8 (l  - -  ~) F s ( t ) = 2 ( t - - ' ~ ) B , ( t ) + ' - ~ - - ~  ]/-F-~ ~ arcsin ] / '~- -  

- -2  I / ' i - - t + ( t - - t ) ~ - 4 ~ ( t - - - ~ )  l / ' l - - t ( l - - B , ( t ) )  

B ,  (0 = e ~tj~ (t - r (2 r  

The funct ion B,(t)  d e s c r i b e s  the d e c r e a s e  in the f ield in a s t a t i ona ry  fiat gap bounded by a conduc tor  
wi thout  a field~ 

At  the end of the c o m p r e s s i o n  with slow pumping the flux r e m a i n i n g  in the cavity- is 
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Fs, = 9/4 --  ~f~--]~ + 2 (1 --~/8) B, (1) 

16 1 ~ 6 _ . . .  for ~>~l  

p,, ~.~ + ~__L_ 3:2 + ~__L_,,5:2 
4 V ~  ~" i 6 ~  ~" - - . -  f o r  

In the case  of rap id  pumping  

At the end of the compression 

Fr, = (t "~ 8/~) B, (t) -- 4/]/ 
Fr,:.~i--8/}f~'~+i2/~--. . .  for ~>~t 

Fr, ~ 8 ]/'~" ~3/2 ~ 1 "LSN + '  �9 �9 for I~ "~ t 

The  r a t io  of flux l o s s e s  in the  two c a s e s  of pumping w i t h #  >> 1 is 

( i  - -  F r , )  / ( t  - -  F ~ , )  = s/~ 

The  dependence  F(x) f o r  # = 1, 2, 5, 10, 20, 50, and 80, c o r r e s p o n d i n g  to cu rves  1-7,  is p r e s e n t e d  in 
F ig .  2 (slow pumping) and Fig .  3 ( rapid pumping) .  

The  rap id  pumping  l eads  to the g r e a t e s t  flux l o s s e s  and the slow pumping to the l eas t .  The o the r  
c a s e s  of pumping  by a c u r r e n t  i n c r e a s i n g  with t i m e  give 

Fr. ~ F. ~ Fs, 

N u m e r i c a l  ca lcu la t ions  w e r e  made  of the flux diffusion dur ing pumping with a cons tan t  c u r r e n t ,  with 
a c u r r e n t  i n c r e a s i n g  in p r o p o r t i o n  to ~-t and with a l i n e a r l y  i n c r e a s i n g  c u r r e n t .  The ca lcula t ion  was  c o n -  
duc ted  in two s t a g e s .  F i r s t  the pa r t i a I  so lut ion Fi(x) of the nonhomogeneous  equat ion (2.11) with null con -  
di t ions a t  x = 0 was  sought  by the s t a n d a r d  R u n g e - K u t t a  p r o g r a m  with au toma t i c  choice  of the s tep  and 
only the va lues  F l  and F i '  at  the point  x = 1 w e r e  de r ived .  Then by subs t i tu t ing  these  va lues  into the 
gene ra l  so lut ion (2.12) the cons tan t s  F ,  and F . '  w e r e  d e t e r m i n e d  f r o m  the init ial  condit ions (2.10), and Eq. 
(2.11) was  so lved  aga in  with F(0) = F .  and F ' (0)  = F , "  F o r  al l  the c a s e s  of pumping  e x a m i n e d F , '  = 
2 v:-~ F .. 

The dependence oftheflux losses on the pumping time is shown in Fig. 4 where graphs are presentea 
for ]~ = 1 (lower group of curves) and # = 50 (upper group of curves) and to = 10 -8, 0.I, 0.5, I, 5, and I0 r 
with pumping by a constant current. The largest value of to corresponds to the top curve in Fig. 4. 

The effect of the shape of the pumping pulse on the flux losses is illustrated in Fig. 5. The curves 

presented in it pertain to t o = 1 and P = 1 (two lower curves) and # = I0 (upper curves) with pumping by a 
constant current (upper of two adjacent curves) and by a linearly increasing current (lower curves). For 
pumping with a current increasing in proportion to ~ft the graph of F (x) is located between the curves of 

pumping with a linear and a constant current. 

The flux losses depend weakly on the shape of the pumping current pulse and are determined mainly 

by the magnetic Reynolds number # and the pumping time to. 

In the model examined the flux losses proved to be considerable even for large #. For example, 
0.23-< I-F. ~0.45 at P=50and 0.56 -< l-F* -<0.72at ~ =I0. Such losses are connected with the com- 

pression of the magnetic field in the cavity and with the strong increase in the field gradient at the conduc- 

tor boundary. 

The model of flux losses described can be used for estimates of this parameter for fiat MA generators 
and must be improved for an examination of the last stages of the compression when the geometry of the 

field compression changes and the problem becomes close to that described in [3]. 

The authors thank B. S. Novoselov for help in conducting the calculations. 
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